
The New C Standard (Excerpted material)

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002-2008 Derek M. Jones. All rights reserved.

6.7.1 Storage-class specifiers1364

6.7.1 Storage-class specifiers

1364
storage-
class specifier
syntax

storage-class-specifier:
typedef
extern
static
auto
register

Commentary

The character sequence regist is not generated by the algorithms commonly used by speakers of English forabbreviating
identifier

abbreviating register.

C++

The C++ Standard classifies typedef (7.1p1) as a decl-specifier, not a storage-class-specifier
(which also includes mutable, a C++ specific keyword).

Other Languages

Languages often use the keyword type to denote that a type is being declared, although a few languages
(e.g., Algol 68 and CHILL) use mode, or some variation of that word. Java is unusual, in a modern language,
in not providing a mechanism for defining a name to have a primitive (scalar in C terminology) type or array
type.

Some languages also use the keyword extern. Fortran uses the keyword extern to declare a parameter
as denoting a callable function (it does not have function types as such).

Some languages (e.g., CHILL) provide a mechanism for specifying which registers are to be used to hold
objects (CHILL limits this to the arguments and return value of functions). The keyword register is unique
to C (and C++).

Pascal requires that the keyword forward on procedure and function declarations that are defined later in
the same source file.

Coding Guidelines

The standard only uses the keyword auto in a few places (outside of comments in examples). However,footnote
100

1372

for statement
declaration part

external
declaration

not auto/register

the phrase automatic storage duration occurs much more often. An occurrence of the keyword auto in the

automatic
storage duration

visible source provide little additional information to a reader. A declaration’s lexical position with respect to
being inside/outside of a function definition, or the presence of other storage-class specifiers provides all the
information required by a reader. As the Usage figures show (see Table 1364.1) existing practice is not to use
this keyword. A guideline recommending against its use would be redundant.

2 v 1.1 January 30, 2008

6.7.1 Storage-class specifiers 1365

Table 1364.1: Common token pairs involving a storage-class. Based on the visible form of the .c files (the keyword auto
occurred 14 times).

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

static void 33.7 32.7 extern int 32.1 1.7
static int 28.2 15.1 register struct 19.1 1.4
typedef union 3.2 11.0 typedef struct 62.4 1.2
static const 1.5 10.0 register int 23.0 1.2
static volatile 0.3 8.6 register char 10.2 1.2
typedef enum 10.8 8.2 register unsigned 6.1 0.9
static signed 0.0 6.5 extern char 7.4 0.9
static unsigned 3.8 5.5 extern struct 6.9 0.5
extern double 1.3 5.5 static identifier 21.0 0.3
static char 4.1 5.1 typedef unsigned 6.2 0.2
static struct 6.4 4.8 typedef identifier 7.9 0.0
register enum 1.6 4.6 register identifier 35.9 0.0
extern void 21.5 2.1 extern identifier 23.7 0.0

Table 1364.2: Common token pairs involving a storage-class. Based on the visible form of the .h files (the keyword auto
occurred 6 times).

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
First Token

% Occurrence of
Second Token

typedef union 12.4 67.1 typedef unsigned 6.6 3.1
typedef enum 6.2 37.2 extern unsigned 2.9 2.8
typedef signed 0.5 28.6 static void 10.3 2.2
extern void 28.6 24.0 typedef void 4.0 1.6
extern double 0.3 17.9 static int 7.0 1.2
typedef struct 46.3 16.6 extern identifier 32.2 0.9
extern int 23.2 15.2 register long 16.0 0.8
extern float 0.3 9.8 register unsigned 24.8 0.6
register signed 2.6 8.2 static identifier 70.3 0.5
static const 6.4 5.0 register int 18.4 0.3
extern char 3.8 4.8 typedef identifier 16.7 0.2
extern struct 4.3 3.3 register identifier 18.4 0.0

Constraints

1365 At most, one storage-class specifier may be given in the declaration specifiers in a declaration.100)

Commentary
The storage-class specifier can be used in a declaration to specify two attributes: the storage duration, and

storage
duration
object

linkage. There is only one context where the appearance of a storage-class specifier in a declaration can linkage

affect the storage duration of the object being declared. An object declared in block scope has automatic
storage duration unless either of the keywords extern or static appear in its declaration. In which case it
has static storage duration. The presence of the storage-class specifiers typedef, extern, and static may
cause the default linkage given to an identifier, because of where it is declared in the source, to be changed.

C++

While the C++ Standard (7.1.1p1) contains the same requirement, it does not include typedef in the list
of storage-class-specifiers. There is no wording in the C++ limiting the number of instances of the
typedef decl-specifier in a declaration.
Source developed using a C++ translator may contain more than one occurrence of the typedef decl-specifier
in a declaration.

January 30, 2008 v 1.1

6.7.1 Storage-class specifiers1369

Other Languages
In many languages the location of an objects declaration in the source code is used to specify its storage class.
Like C, some languages provide keywords that enable the default storage class to be overridden, e.g., Fortran
common.

Coding Guidelines
Should a storage-class specifier ever appear in a declaration? The only two that are ever necessary are
typedef and static (to change default behavior; extern in block scope is not necessary because the
declaration can be moved to file scope). All other uses are related to coding guidelines issues. The use of
extern is covered by the guideline recommendation dealing with a single point of declaration.identifier

declared in one file
??

The storage duration and linkage issues associated with the storage-class specifier static are discussed
elsewhere. The efficiency issues associated with the storage-class specifier register are discussed elsewhere.static

internal linkage
static

storage duration
register

storage-class
1369Semantics

1366The typedef specifier is called a “storage-class specifier” for syntactic convenience only;

Commentary
The keyword typedef is not really a storage class as such. However, the syntax for typedef name declara-
tions is the same as that for object and function declarations. The committee considered it a worthwhile
simplification to treat typedef as a storage class.

C++

It is called a decl-specifier in the C++ Standard (7.1p1).

Other Languages
In other languages the keyword used to define a new type is rarely placed in the same syntactic category as
the storage-class specifiers.

1367it is discussed in 6.7.7.

1368The meanings of the various linkages and storage durations were discussed in 6.2.2 and 6.2.4.

1369A declaration of an identifier for an object with storage-class specifier register suggests that access to theregister
storage-class object be as fast as possible.

Commentary
It is the developer who is making the suggestion to the translator (sometimes the term hint) is used). The
original intent of this storage-class specifier was to reduce the amount of work a translator vendor needed to
do when implementing a translators machine code generator (which also contributed to keeping the overall
complexity of a C translator down). This suggestion is often interpreted by developers to mean that translators
will attempt to keep the values of objects declared using it in registers. Had C been designed in the 1990s the
keyword chosen might have been cache.cache

The standard does not permit declarations at file scope to include the storage-class specifier register.external
declaration

not auto/register

C++

7.1.1p3 A register specifier has the same semantics as an auto specifier together with a hint to the implementation
that the object so declared will be heavily used.

Translator implementors are likely to assume that the reason a developer provides this hint is that they are
expecting the translator to make use of it to improve the performance of the generated machine code. The

v 1.1 January 30, 2008

6.7.1 Storage-class specifiers 1369

C++ hint does not specify implementation details. The differing interpretations given, by the two standards,
for hints provides to translators is not likely to be significant. The majority of modern translators ignore the
hint and do what they think is best.

Other Languages
While it might be possible to make use of particular techniques (e.g., defining the most frequently accessed
objects first) to improve the quality of machine code generated by translators of any language, the specification
of a language’s semantics rarely includes such hint mechanisms.

Common Implementations
Processors rarely perform operations directly on values held in storage, they move them to temporary working
locations first. In nearly all cases these temporary working locations are a small set of storage areas, known
as registers, in the processor itself. Some processors have an architecture that is stack-based[10] rather than
register-based and the Bell Labs C Machine[6] was a stack-based processor specifically designed to execute
C. However, experience with the two architectural choices has shown that the register-based approach yields
better overall performance and the majority of modern processes use it. Stack-based processors are not as

expression
processor evalua-
tion

common as they once were, although new ones are still occasionally built.
What is a register? The documentation for the Ubicom IP2022[15] says it has 255 registers. However, the

transistors used to represent the values of these registers (at least in the current implementation) are in the
same area of the chip as the rest of storage. In fact these registers occupy the lower portion of the processors
address space. They are accessed using a direct addressing mode (the same could be said about registers in
other processors, except that rarely share an address with the rest of storage).

Customer demand for higher-performance (in the generated machine code) and competition between
translator vendors means that vendors desire to minimize the cost of producing a code generator no longer
includes not implementing a sophisticated register allocator.

Using the storage-class specifier register to help improve the performance of the generated machine
code can be a difficult process that sometimes has the reverse affect (programs that execute more slowly).
Translator implementors are aware that developers expect objects declared using register to have their
values kept in registers when possible. Some implementors have decided to attempt to meet this expectation,
for the duration of the objects lifetime. The result can be a decrease in performance, because a register is
used to hold a particular objects value during a sequence of statements where it would have been better for
that register to be holding a different objects value. Other translator implementors believe that the known
register allocation algorithms produce better results and ignore any developer provided hints.

The values of objects are not the only things that may be worth trying to keep in registers. If a sequence
of code performs the same operation on two operands, whose values have not changed between the two
occurrences (a common subexpression), keeping the result in a register and reusing it may be more efficient

common
subexpres-
sion

than performing the operation again. Use of the register storage-class specifier can have an indirect benefit.
An optimizer does not need flow analysis to deduce that the object is not aliased; it is not permitted to as the
operand of the address-of operator.

unary &
operand con-
straints

A number of algorithms have been proposed for allocating values to registers (it is known that optimal register
optimizing
allocationregister allocation is NP-hard[7]). An equivalence between this problem and the pure mathematics problem

expression
optimal evaluationof graph coloring has been shown to exist.[5] So called register coloring algorithms have proved to be very

popular for one class of processors (those having many registers that are treated orthogonally) and a variety
of different variations on this approach have been used. When the time taken to translate code is important
(e.g., just in time compilation) linear scan register allocation[12] is much faster than register coloring and has
been found to result in code that executes only 12% slower than an aggressive register allocator.

It has proved difficult to find general algorithms for register allocation on processors having few registers,
or where there are restrictions on the operations that can be performed using some registers. In many cases
the allocation algorithms are hand tailored for each processor. Mapping the problem to one in integer
linear programming has produced worthwhile results for processors having few registers, such as the Intel
Pentium.[2]

January 30, 2008 v 1.1

6.7.1 Storage-class specifiers1370

Register allocation algorithms generally only consider trying to maintain objects having a scalar type inarray element
held in register registers. A study by Li, Gu, and Lee[11] evaluated the benefits of doing the same for array elements, known

as scalar replacement (see Chapter 8 of Allen[1]). They used trace driven simulations of a variety of Fortran
benchmark programs to obtain idealised (tracing the actual data references) measurements to obtain the best
results that could be achieved, if an optimizer optimally assigned objects to registers. The results showed
that having between 48 and 96 registers available, for holding scalar and array element values, had the most
impact (savings were even possible with 32 available registers). On five C based multimedia kernels an
implementation of scalar replacement by So and Hall[14] reduced memory accessed by 58% to 90% and saw
speedups of between 2.34 and 7.31.

A number of studies have investigated the affects of increasing or decreasing the number of registers
available to a translator on the performance of the generated machine code. Having sufficient registers to
be able to keep all object values in one of them may be the ideal. In practice optimizers are limited by the
analysis they perform on the source. For instance, if it is not possible to deduce whether a particular object
is referenced via a pointer, an optimizer has to play safe and access the value from storage. Performance
improvements have been found to more or less peak at 17 registers using lcc,[4] later analysis using more
sophisticated optimizations (including inlining and allocating globals to registers) found that effective use
could be made of 64 registers.[13]

Many early processors tended to have few registers because of hardware complexity and cost considerations.
The relative importance of these considerations has decreased over time and having 32 registers is a common
theme among modern processors. However, in practice once function calling conventions are taken into
account and various registers reserved (for a variety of reasons, for instance holding the stack pointer) there
are rarely more than 16, out of 32, truly temporary registers available to a translator.ABI

Some implementations support the use of the register storage-class specifier on declarations at file scope.external
declaration

not auto/register
Such declarations are usually specifications of which register should be dedicated to holding a particular
object.[3, 9]

Franklin and Sohi[8] measured register usage while programs from the SPEC89 benchmark executed on a
MIPS R2000 (see Table 1369.1).

Table 1369.1: Degree of use of floating-point and integer register instances (a particular value loaded into a register). Values
denote the percentage of register instances with a particular degree of use (listed across the top), for the program listed on the left.
For instance, 15.51% of the integer values loaded into a register, in gcc, are used twice. Left half of table refers to floating-point
register instances, right half of table to integer register instances. Zero uses of a value loaded into a register occur in situations
such as an argument passed to a function that is never accessed. Adapted from Franklin and Sohi.[8]

Usage 0 1 2 3 ≥4 Average 0 1 2 3 ≥4 Average

eqntott 0.89 71.34 17.54 9.47 0.76 1.86
espresso 3.67 72.30 17.66 3.74 2.63 1.48
gcc 6.26 67.37 15.51 4.45 6.41 1.69
xlisp 4.27 66.14 12.42 10.20 6.97 1.84
dnasa7 0.00 99.83 0.02 0.03 0.12 1.31 0.67 2.36 16.29 64.36 16.33 3.28
doduc 1.46 84.00 9.51 1.94 3.09 1.36 10.31 44.35 26.52 10.13 8.69 2.93
fpppp 0.16 91.09 6.15 1.14 1.46 1.16 1.34 10.12 83.45 0.46 4.63 3.09
matrix300 0.00 99.92 0.00 0.00 0.08 1.25 15.29 61.54 7.71 0.12 15.35 1.92
spice2g6 0.21 79.85 19.22 0.16 0.56 1.22 4.04 73.38 12.08 3.56 6.94 1.68
tomcatv 0.00 86.43 8.30 1.49 3.77 1.26 0.12 24.99 37.54 27.40 9.96 3.22

1370The extent to which such suggestions are effective is implementation-defined.101)register
extent effective

Commentary
All translators need to have a register allocation algorithm to be able to generate executable machine code.
The extent to which the register storage-class specifier affects the behavior of this algorithm needs to be
documented. A translator’s documented behavior is unlikely to be sufficient to enable a developer to predict

v 1.1 January 30, 2008

6.7.1 Storage-class specifiers 1371

which values will be held in which processor register. The possible permutations are rarely sufficiently small
that the behavior is easily enumerated.

C++

The C++ Standard gives no status to a translator’s implementation of this hint (suggestion). A C++ translator
is not required to document its handling of the register storage-class specifier and often a developer is no
less wiser than if it is documented.

Coding Guidelines
Those coding guideline documents that base their recommendations on the list given in annex I are likely
to recommend against the use of the register storage-class specifier. The only externally visible affect of
using the register storage-class specifier is a possible change in execution time performance or size of
program image. In both cases the changes are unlikely to be worth a guideline. program

image

Example
Macros provide a flexible method of controlling the definitions that contain the register storage-class
specifier.

1 #if EIGHT_BIT_CPU != 0
2 #define REG1 register
3 #define REG2
4 #define REG3
5 #define REG4
6 #endif
7

8 #if MODERN_DSP != 0
9 #define REG1 register

10 #define REG2 register
11 #define REG3
12 #define REG4
13 #endif
14

15 #if RISC_CHIP != 0
16 #define REG1 register
17 #define REG2 register
18 #define REG3 register
19 #define REG4 register
20 #endif
21

22 void f(void)
23 {
24 REG1 int total_valu;
25 REG2 short intermediate_valu;
26 REG3 int the_valu;
27 REG4 long less_often_used_value;
28

29 /* ... */
30 }

1371 The declaration of an identifier for a function that has block scope shall have no explicit storage-class specifier block scope
storage-class useother than extern.

Commentary
There is a lot of existing source containing function declarations at block scope using the extern storage-
class specifier. The Committee did not want to render such usage as undefined behavior and decided to
permit it.

January 30, 2008 v 1.1

6.7.1 Storage-class specifiers1376

Other Languages
Most languages do not support the declarations of identifiers for functions in block scope. Although some
languages do support nested function definitions.

Common Implementations
Translators usually flag an occurrence of this undefined behavior.

Coding Guidelines
If the guideline recommendation dealing with function declarations at file scope is followed this requirementidentifier

declared in one file
??

is not an issue.

1372100) See “future language directions” (6.11.5).footnote
100

1373101) The implementation may treat any register declaration simply as an auto declaration.footnote
101

Commentary
That is to say, an implementation may treat such a declaration as an auto declaration for the purposes of
storage allocation. However, the various constraints and other kinds of behavior associated with an object

unary &
operand

constraints
declared using the register storage class still apply.

1374However, whether or not addressable storage is actually used, the address of any part of an object declared
with storage-class specifier register cannot be computed, either explicitly (by use of the unary & operator as
discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in 6.3.2.1).

Commentary
A constraint violation occurs if the operand of the address-of operator has been declared using storage-class
specifier register.

unary &
operand

constraints
This observation applies when the type category is an array type. But, it does not apply to the case wheretype category

a member of a structure or union type has an array type. For instance:

1 struct {
2 register int mem[100];
3 } x;
4 &x.mem; /* & applied to an array type. */
5 &x; /* & not applied to an array type. */

C++

This requirement does not apply in C++.
unary &

operand
constraints

1375Thus, the only operator that can be applied to an array declared with storage-class specifier register is
sizeof.

Commentary
An operand having an array type is not converted to pointer type when it is operated on by the address-of or
sizeof operator. The former would be a constraint violation, leaving the latter.

array
converted
to pointer

unary &
operand

constraints
C++

This observation is not true in C++.unary &
operand

constraints

1376If an aggregate or union object is declared with a storage-class specifier other than typedef, the properties
resulting from the storage-class specifier, except with respect to linkage, also apply to the members of the
object, and so on recursively for any aggregate or union member objects.

v 1.1 January 30, 2008

6.7.1 Storage-class specifiers 1377

Commentary
Members of a structure or union type always have no linkage. member

no linkage

Another property resulting from the presence of a storage-class specifier is the storage duration of an storage
duration
objectobject. The other properties might more properly be called consequences. The consequences arising from

wording in other parts of the Standard, such as Constraints, undefined and implementation-defined behaviors.
For instance, while placing the register storage-class specifier on the declaration of an object having a
structure type may not result in any of its members being held in processor registers, the associated constraints 1369 register

storage-class

still apply (it is a constraint violation for the result of a member selection operator to appear as the operand
of the address-of operator).

C90
This wording did not appear in the C90 Standard and was added by the response to DR #017q6.

C++

The C++ Standard does not explicitly specify the behavior in this case.

Other Languages
In many object-oriented languages it is possible to specify that members of classes have a different storage-
class, or linkage, than the class itself.

1377 Forward references: type definitions (6.7.7).

January 30, 2008 v 1.1

References
1. R. Allen and K. Kennedy. Optimizing Compilers for Modern

Architecture. Morgan Kaufmann Publishers, 2002.
2. A. W. Appel and L. George. Optimal spilling for CISC

machines with few registers. Technical Report TR-630-00,
Princeton University, Mar. 2001.

3. ARM. ARM Developer Suite: Compilers and Libraries Guide.
ARM Limited, 1.2 edition, Nov. 2001.

4. M. E. Benitez and J. W. Davidson. Register deprivation mea-
surements. Technical Report CS-93-63, Department of Com-
puter Science, University of Virginia, Nov. 15 1993.

5. P. Briggs. Register Allocation via Graph Coloring. PhD thesis,
Rice University, Apr. 1992.

6. D. R. Ditzel and H. R. McLellan. Register allocation for free:
The C machine stack cache. In Proceedings of the First
International Symposium on Architectural support for Pro-
gramming Languages and Operating Systems, pages 48–56,
1982.

7. M. Farach and V. Liberatore. On local register allocation. Tech-
nical Report DIMACS Technical Report 97-33, Rutgers Uni-
versity, July 1997.

8. M. Franklin and G. S. Sohi. Register traffic analysis for stream-
lining inter-operation communication in fine-grain parallel pro-

cessors. In Proceedings of the 25th Annual International
Symposium on Microarchitecture (MICRO-25), pages 236–
245, 1992.

9. T. Instruments. TMS320C2x/C2xx/C5x Optimizing C Com-
piler User’s Guide. Texas Instruments, Inc, spru024e edition,
Aug. 1999.

10. P. J. Koopman Jr. Stack Computers the new wave. Mountain
View Press, 1989.

11. Z. Li, J. Gu, and G. Lee. An evaluation of the potential bene-
fits of register allocation for array references. In Proceedings
of the 1st Workshop on Interaction between Compilers and
Computer Architectures, Feb. 1996.

12. M. Poletto and V. Sarkar. Linear scan register allocation.
ACM Transactions on Programming Languages and Systems,
21(5):895–913, Sept. 1999.

13. M. Postiff, D. Greene, and T. Mudge. The need for large regis-
ter files in integer codes. Technical Report CSE-TR-434-00,
The University of Michigan, Aug. 2000.

14. B. So and M. W. Hall. Increasing the applicability of scalar
replacement. In Compiler Construction, 13th International
Conference, CC 2004, pages 185–201, Mar. 2004.

15. Ubicom. IP2022 Internet Processor. Ubicom, Inc, preliminary
edition, July 2002.

v 1.1 January 30, 2008

