
The New C Standard (Excerpted material)

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002-2008 Derek M. Jones. All rights reserved.

6.5.8 Relational operators1197

6.5.8 Relational operators

1197
relational op-
erators
syntax

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Commentary
The term comparison operators is commonly used by developers to refer to the relational operators. These
operators are often combined to specify intervals. (C does not support SQL’s between operator, or the Cobol
form (x > 0 and < 10), which is equivalent to (x > 0 and x < 10).)

Other Languages
Nearly every other computer language uses these tokens for these operators. Fortran uses the tokens .LT.,
.GT., .LE., and .GE. to represent the above operators. Cobol supports these operators as well as the
equivalent keywords LESS THAN, LESS THAN OR EQUAL, GREATER THAN, and GREATER THAN OR EQUAL.

Some languages (e.g., Ada and Fortran) specify that the relational and equality operators have the same
precedence level.

Common Implementations
Some implementations support the unordered relational operators !<, !<=, !>=, and !>. The NCEG alsorelational

operators
unordered included !<> for unordered or equal; !<>= for unordered; <>= for less, equal, or greater; and defines !=

to mean unordered, less or greater; which enables the 26 distinct comparison predicates defined by IEC
60559 to be used. These operators were included in the Technical Report produced by the NCEG FP/IEEENCEG

Subcommittee. The expressions (a !op b) and !(a op b) have the same logical value. Without any
language or library support, a !> b could be implemented as: (a != a) || (b != b) || (a <= b).

Coding Guidelines
A study by Moyer and Landauer[8] found that the time taken for subjects to decide which of two single-digitdistance effect

numeric differ-
ence values was the largest was inversely proportional to the numeric difference in their values (known as a

distance effect).
How do people compare multi-digit integer constants? For instance, do they compare them digit by digit

(i.e., a serial comparison), or do they form two complete values before comparing their magnitudes (the
so-called holistic model)? The following two studies show that the answer depends on how the comparisons
are made:

• A study by Dehaene, Dupoux, and Mehler[2] told subjects that numbers distributed around the value
55 would appear on a screen and asked them to indicate whether the number that appeared was larger
or smaller than 55 (other numbers— e.g., 65— were also used as the center point). The time taken
for subjects to respond was measured. The results were generally consistent with subjects using the
holistic model (exceptions occurred for values ending in zero, where subjects may have noticed that
a single-digit comparison was sufficient, and when the value being compared against contained two
identical digits). The response times also showed a distance effect.

• A study by Zhang and Wang[9] told subjects that they would see two numbers, both containing two
digits, on a screen and asked them to indicate whether the number that appeared on the left or the right
was the largest. The time taken for subjects to respond was measured. When the largest value was less
than 65, the results were generally consistent with subjects using a modified serial comparison of the
digits (modified to take account of Stroop-like interference between the unit and ten’s digit). When thestroop effect

largest value was greater than 65, a serial comparison gave a slightly better fit to the results than the
modified serial comparison model.

2 v 1.1 January 30, 2008

6.5.8 Relational operators 1197

Other studies have found that people do not treat all relational comparisons in the same way. A so-called symbolic dis-
tance effectsymbolic distance effect exists. This is a general effect that occurs when people compare numbers or other

symbols having some measure that varies along some continuum.

For instance, a study by Moyer and Bayer[7] gave four made-up names to four circles of different diameters.
One set of four circles (the small range set) had diameters 11, 13, 15, and 17 mm, while a second set (the
large range set) had diameters 11, 15, 19, and 23 mm. On the first day one group of subjects learned the
association between the four made-up names and their associated circle in the small range set, while another
group of subjects learned the word associations for the large range set. On the second day subjects were
tested. They were shown pairs of the made-up names and had to indicate which name represented the larger
circle. Their response times and error rates were measured. In both cases, response rate was faster, and error
rate lower, when comparing circles whose diameters differed by larger amounts. However, performance was
better at all diameter differences for subjects who had memorized an association to the circles in the large
range set; they responded more quickly and accurately than subjects using the small range set. The results
showed a distance effect that was inversely proportional to the difference of the area of the circles being
compared.

A symbolic distance effect (which is inversely proportional to the distance between the quantities being
compared) has also been found for comparisons involving a variety of objects that differ in some way.

Freksa[3] adapted Allen’s temporal algebra[1] to take account of physical constraints on perception, enabling
cognitively plausible inferences on intervals to be performed.[4]

Table 1197.1: Common token pairs involving relational operators (as a percentage of all occurrences of each token). Based on
the visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

identifier < 0.7 87.9 >= character-constant 3.6 1.5
identifier >= 0.2 85.9 < integer-constant 40.0 1.3
identifier > 0.3 85.0 > integer-constant 53.2 0.9
identifier <= 0.1 84.8 >= integer-constant 41.2 0.4
) <= 0.1 10.4 < identifier 53.9 0.4
) >= 0.1 10.1 <= integer-constant 41.0 0.2
) < 0.3 9.9 > identifier 40.1 0.2
) > 0.1 9.6 >= identifier 50.0 0.1
<= character-constant 7.1 1.7 <= identifier 45.7 0.1

Table 1197.2: Occurrences (per million words) of English words used in natural language sentences expressing some relative
state of affairs. Based on data from the British National Corpus.[5]

Word Occurrences per
Million Words

Word Occurrences per
Million Words

great 464 less 344
greater 154 lesser 18
greatest 51 least 45
greatly 33 – –
– – less than 40

January 30, 2008 v 1.1 3

6.5.8 Relational operators1199

O
cc

ur
re

nc
es

1

10

100

1,000

10,000
binary <
× decimal notation
• hexadecimal notation

××

×

•

×
×

•

×

•

×
×

×

•

×

×

×

×

•

×
×

×

×

•
×
•×•×•

×

•

×

×

×

××

×

×

•
×

×
×

×

•

×
×

×
×

×

×

×

××
×

×

××

×
×

×

×

•

×

•

×

×
××

×

•

×

×
×

××

×•
×

×

•××

×

×××××•

×

×
×

×

•
•

×

× ×

×
×

••

×

×
××××

×

×

××

×

×
×
× ××

×

•

×

•

binary >
×

•

×

•

×

•

×

•

×

•

×
×
×

•

×

•

×

•

×

•

×

×

•

××

•

×

•

×

•
××

•

×•
×

•

×

•
×

×××
×
××

×

××

•

×

•
×

•
×
×

•

×

×
×

×

•

×

×

•×

•

×

××××•

×

××

×
×

•

×
•

×

•
×•

×

×•×

×××
×
×

•

×

•
×
×
×
××
×
••

××

×

•
•
×
••××

×

×
•×
×
•

×
•×
•

×

•

×• •
×
•

×

•×
•
•

×
•
×
×
×•
×
•

×

×

×

×

×

×

×
××•••

××
×•

×

•
××

•

•

×

×

•

×

×

•×
•

Numeric value

O
cc

ur
re

nc
es

0 1632 64 100 128150 200 255

1

10

100

1,000

10,000 binary <=
×

•

×

•

×

•

××
×

•

×

•

×

•

×

•

×

•

×

•
×

•

×
•

×

×•

×
•

×

•
×•×

•×

•
×

•
××
•×

×

•

×

•
××

•
×

•×
•

×

•

×

•

×

•
×
•××

•
×
•
×•
×

••
•××
•××

•×

•
•

•
××

×
•
•
×
•
×

•
×××•

×

•×
×
•

×
×

•
•
×

••••

•

×

××

×
×
×•××
•
×
××
•

×
×•×
•
×
• ×

•
×
••×

•

×

•

××
×
••
× ×

••
× ×

•
×•

×

•

••
••

•
×
•
••

×

•
•
×

•

×•
×

•

Numeric value

0 1632 64 100 128150 200 255

binary >=×

•

×

•

×

•

×

•

×

•

×
×
×
•

×

•
×

×

•

×
×

•
××

×

•

×

•

×•

×

•
•

×

•×

•

×

×

×

•
×

××

•

×

×
•

×

•
•
×

×•

××××
××

×•×

×
×•
××

×

×

×

•

×

•

××

×

×
×

•

×
•
×
×
×
•
•
×
×
××
•

×

××
×××

×

×

•
×

×
×

×•

×
•

•
×
×

×
×

×•

×••

•
×
××•

×
•

•

×

•
×
×•

•
•
••

×

•×
×•×
×

×•

× •

×

• ×
×
•

×•

×
•

Figure 1197.1: Number of integer-constants having a given value appearing as the right operand of relational operators.
Based on the visible form of the .c files.

Table 1197.3: Occurrence of relational operators (as a percentage of all occurrences of the given operator; the parenthesized
value is the percentage of all occurrences of the context that contains the operator). Based on the visible form of the .c files.

Context % of < % of <= % of > % of >=

if control-expression 76.7 (3.4) 45.5 (6.7) 68.5 (1.8) 80.5 (6.0)
other contexts 11.5 (—) 4.8 (—) 9.5 (—) 8.4 (—)
while control-expression 4.8 (3.9) 4.6 (12.0) 4.8 (2.2) 7.6 (10.4)
for control-expression 7.1 (3.1) 45.2 (65.9) 17.2 (4.5) 3.5 (2.6)
switch control-expression 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Constraints

1198One of the following shall hold:relational
operators
constraints Commentary

This list does not include pointer to function types.

Other Languages
Some languages support string values as operands to the relational operators. The comparison is usually
made by comparing the corresponding characters in each string, using the designated operator.

1199— both operands have real type;relational
operators
real operands Commentary

Relational operators applied to complex types have no commonly accepted definition (unlike equality) and
equality

operators
arithmetic
operands the standard does not support this usage.

Rationale
v 1.1 January 30, 2008

6.5.8 Relational operators 1199

Some mathematical practice would be supported by defining the relational operators for complex operands
so that z1 op z2 would be true if and only if both creal(z1) op creal(z2) and cimag(z1) == cimag(z2).
Believing such use to be uncommon, the C99 Committee voted against including this specification.

C90

both operands have arithmetic type;

The change in terminology in C99 was necessitated by the introduction of complex types.

Coding Guidelines

As discussed elsewhere, it is sometimes necessary to step through the members of an enumeration type. This
postfix
operator
operandsuggests the use of looping constructs, which in turn implies using a member of the enumerated type in the

loop termination condition.

Dev ??
Both operands of a relational operator may have an enumeration type or be an enumeration constant,
provided it is the same enumerated type or a member of the same enumerated type.

Example

1 enum color {first_color, red=first_color, orange, yellow, green, blue,
2 indigo, violet, last_color};
3

4 void f(void)
5 {
6 for (enum color index=first_color; index < last_color; index++)
7 ;
8 }

January 30, 2008 v 1.1

6.5.8 Relational operators1200

Table 1199.1: Occurrence of relational operators having particular operand types (as a percentage of all occurrences of each
operator; an _ prefix indicates a literal operand). Based on the translated form of this book’s benchmark programs.

Left Operand Operator Right Operand % Left Operand Operator Right Operand %

int >= _int 35.3 unsigned char > _int 2.3
int > _int 35.2 unsigned char >= _int 2.3
int < _int 34.8 ptr-to <= ptr-to 2.3
int <= _int 28.2 unsigned int >= unsigned int 2.1
int < int 25.5 long <= long 2.1
int <= int 17.5 long >= _int 2.0
other-types > other-types 15.8 float > _int 2.0
other-types < other-types 15.4 unsigned long > unsigned long 1.9
int > int 15.0 unsigned short > unsigned short 1.8
other-types <= other-types 14.5 unsigned short > _int 1.8
other-types >= other-types 13.2 unsigned int <= unsigned int 1.7
enum <= _int 12.6 ptr-to >= ptr-to 1.7
int >= int 10.8 int <= unsigned long 1.7
enum >= enum 7.5 float > float 1.7
unsigned int >= int 7.3 char >= _int 1.7
unsigned int > _int 6.0 unsigned long >= unsigned long 1.6
long < _int 5.3 unsigned long > _int 1.5
ptr-to > ptr-to 4.1 double <= _double 1.5
unsigned int <= _int 4.0 unsigned long <= unsigned long 1.4
unsigned int < unsigned int 3.7 long >= long 1.4
unsigned int >= _int 3.5 int < unsigned long 1.4
char <= _int 3.5 unsigned long < unsigned long 1.3
unsigned int > unsigned int 3.3 long < long 1.3
unsigned char <= _int 3.1 _long >= _long 1.3
long > long 2.9 unsigned short <= unsigned short 1.2
ptr-to < ptr-to 2.8 unsigned int > int 1.2
int < unsigned int 2.7 float < _int 1.2
unsigned long <= _int 2.6 unsigned short <= _int 1.1
unsigned int < _int 2.5 unsigned char < _int 1.1
_long >= long 2.5 float < float 1.1
long > _int 2.5 unsigned long > int 1.0
enum >= _int 2.5 long >= int 1.0
unsigned long >= int 2.4 float <= _int 1.0

1200— both operands are pointers to qualified or unqualified versions of compatible object types; orrelational
operators
pointer operands

Commentary

The rationale for supporting pointers to qualified or unqualified type is the same as for pointer subtraction.subtraction
pointer operands

Differences in the qualification of pointed-to types is guaranteed not to affect the equality status of two
pointer values.

pointer
converting qual-
ified/unqualified

C++

5.9p2
Pointers to objects or functions of the same type (after pointer conversions) can be compared, with a result
defined as follows:

The pointer conversions (4.4) handles differences in type qualification. But the underlying basic types have
to be the same in C++. C only requires that the types be compatible. When one of the pointed-to types is an
enumerated type and the other pointed-to type is the compatible integer type, C permits such operands to
occur in the same relational-expression; C++ does not (see pointer subtraction for an example).subtraction

pointer operands

v 1.1 January 30, 2008

6.5.8 Relational operators 1202

Other Languages
Few languages support relational comparisons on objects having pointer types.

Table 1200.1: Occurrence of relational operators having particular operand pointer types (as a percentage of all occurrences of
each operator with operands having a pointer type). Based on the translated form of this book’s benchmark programs.

Left Operand Op Right Operand % Left Operand Op Right Operand %

char * > char * 67.5 const char * > const char * 4.0
char * <= char * 39.6 other-types > other-types 3.8
char * >= char * 26.9 int * >= int * 3.6
char * < char * 25.8 const char * >= const char * 3.6
struct * <= struct * 23.2 struct * > struct * 3.1
unsigned char * >= unsigned char * 22.8 short * <= short * 3.0
unsigned char * < unsigned char * 21.0 other-types < other-types 2.8
short * >= short * 16.1 unsigned int * >= unsigned int * 2.6
struct * < struct * 14.9 const char * < const char * 2.6
unsigned char * <= unsigned char * 13.4 const unsigned char * < const unsigned char * 2.0
signed int * < signed int * 13.1 unsigned int * > unsigned int * 1.9
struct * >= struct * 13.0 unsigned long * <= unsigned long * 1.8
void * > void * 11.0 other-types <= other-types 1.8
void * < void * 9.4 const char * <= const char * 1.8
unsigned char * > unsigned char * 8.7 void * >= void * 1.6
unsigned short * <= unsigned short * 7.9 unsigned short * < unsigned short * 1.2
const unsigned char * <= const unsigned char * 4.9 unsigned int * < unsigned int * 1.2
ptr-to * < ptr-to * 4.8 union * <= union * 1.2
unsigned short * >= unsigned short * 4.7 int * < int * 1.2
const unsigned char * >= const unsigned char * 4.7 int * <= int * 1.2

1201— both operands are pointers to qualified or unqualified versions of compatible incomplete types. relational
operators

pointer to in-
complete type

Commentary
Because the operands are pointers to compatible types, a relational operator only needs to compare the
pointer values (i.e., information on the pointed-to type is not needed to perform the comparison).

C++

C++ classifies incomplete object types that can be completed as object types, so the discussion in the previous object types

C sentence is also applicable here.

Other Languages
Those languages that do not support pointer arithmetic invariably do not support the operands of the relational
operators having pointer type.

Example

1 extern int a[];
2

3 void f(void *p)
4 {
5 if (a+1 > p) /* Constraint violation. */
6 ;
7 if (a+1 > a+2) /* Does not affect the conformance status of the program. */
8 ;
9 }

Semantics

January 30, 2008 v 1.1

6.5.8 Relational operators1204

1202If both of the operands have arithmetic type, the usual arithmetic conversions are performed.relational
operators
usual arithmetic
conversions Commentary

This may also cause the integer promotions to be performed.arithmetic
conversions

integer promotions

Common Implementations
The comparison (the term relational is not usually used by developers) instructions on some processors
can operate on operands of various widths, provided both widths are the same (e.g., those on the Intel x86
processor family can operate on 8-, 16-, or 32-bit operands). If both operands have the same type before the
usual arithmetic conversions, an implementation may choose to make use of such instructions.

Coding Guidelines
The relational operators produce some of the most unexpected results from developers’ point of view. The
root cause of the unexpected behavior is invariably a difference in the sign of the types after the integer
promotions of the operands. Following the guideline recommendation specifying the use of a single integer
type reduces the possibility of this unexpected behavior occurring. However, the use of typedef names fromobject

int type only
??

the standard header, or third-party libraries (or even the use of some operators), can cause of a mixture of
signed types to appear as operands.

Cg 1202.1
The types of the two operands in a relational-expression, after the integer promotions are performed
on each of them, shall both be either signed or both unsigned.

Example

1 #include <stdio.h>
2

3 extern int glob;
4

5 void f(void)
6 {
7 if (glob > sizeof(glob))
8 {
9 if (glob < (int)sizeof(glob))

10 print("glob has a negative value\n");
11 else
12 print("glob has a positive value\n");
13 }
14 else if (glob != 0)
15 print("glob has at most 66.66....% chance of being negative\n");
16 }

1203For the purposes of these operators, a pointer to an object that is not an element of an array behaves therelational
operators
pointer to object same as a pointer to the first element of an array of length one with the type of the object as its element type.

Commentary
The same sentence appears elsewhere in the standard and the issues are discussed there.

additive
operators

pointer to object

C++

This wording appears in 5.7p4, Additive operators, but does not appear in 5.9, Relational operators. This
would seem to be an oversight on the part of the C++ committee, as existing implementations act as if the
requirement was present in the C++ Standard.

v 1.1 January 30, 2008

6.5.8 Relational operators 1205

1204 When two pointers are compared, the result depends on the relative locations in the address space of the
objects pointed to.

Commentary
Here the term address space refers to the object within which the two pointers point. It is not being used in the
common usage sense of the address space of the program, which refers to all the storage locations available
to an executing program. The standard does not define the absolute location of any object or subobject.
However, in some cases it does define their locations relative to other subobjects (and the relational operators 1206 structure

members
later compare later

are about relative positions).

C++

The C++ Standard does not make this observation.

Common Implementations
In most implementations all objects have a location relative to all other objects in the storage used by a
program. Processors rarely perform any checks on the values of pointers. Pointers to different storage
locations (which may or may not currently be used to hold an object) return a result based on these relative
positions in that storage.

Coding Guidelines
Having provided a mechanism to index subcomponents of an object, relational operations on the values of
indexing expressions is the same whether the types involved are integers or pointers.

1205 If two pointers to object or incomplete types both point to the same object, or both point one past the last
element of the same array object, they compare equal.

Commentary
Relational comparison of pointer values has a meaningful interpretation in C because of the language’s
support for arithmetic on pointer values. A more detailed specification of pointer equality is given elsewhere
in the standard. pointers

compare equal

Some expressions, having pointer type, can be paired as operands of a relational operator but not as
operands of the subtraction operator; for instance, given the declarations:

1 struct S {
2 int mem_1;
3 double mem_2[5];
4 int mem_3;
5 double mem_4[5];
6 } x,
7 y[10];

then the following pairs of expressions may appear together as operands of the relational operators, but not
as operands of the subtraction operator:

1 x .mem_1 op x .mem_3
2 y[1].mem_1 op y[3].mem_3
3 y[1].mem_1 op y[3].mem_3
4 x .mem_2[1] op x .mem_4[1]

C++

This requirement can be deduced from:

5.9p2

January 30, 2008 v 1.1

6.5.8 Relational operators1206

— If two pointers p and q of the same type point to the same object or function, or both point one past the end
of the same array, or are both null, then p<=q and p>=q both yield true and p<q and p>q both yield false.

1206If the objects pointed to are members of the same aggregate object, pointers to structure members declaredstructure
members
later compare
later
array elements
later compare
later

later compare greater than pointers to members declared earlier in the structure, and pointers to array
elements with larger subscript values compare greater than pointers to elements of the same array with lower
subscript values.

Commentary
The standard does not specify a representation for pointer types, but rather some of the properties they
must have. The relative addresses of members of the same structure type are specified elsewhere. Thismember

address increasing

wording specifies that increasing the value of an address causes it to compare greater than the original address,
provided both addresses refer to the same structure object. This requirement is not sufficient to calculate the
address of subsequent members of a structure type. For instance, the expression &x.m1+sizeof(x.m1) does
not take into account any padding that may occur after the member m1. There is existing source code that
uses pointer arithmetic to access the members of a structure object. However, the more widespread usage is
interpreting the same object using different types. This requirement and the creation of the offsetof macro
codifies existing practice.

There are two possible ordering of array elements in storage. Established practice, prior to the design of
C, was for increasing index values to refer to elements ever further away from the first. This C sentence
specifies this implementation behavior.

Nothing is said about the result of comparing pointers to any padding bytes. Neither is anything said aboutstructure
unnamed padding

the behavior of relational operators when their operands point to different objects.

C++

This requirement also applies in C++ (5.9p2). If the declaration of two pointed-to members are separated by
an access-specifier label (a construct not available in C), the result of the comparison is unspecified.

Other Languages
The implementation details of array types in Java is sufficiently opaque that storage for each element could
be allocated on a different processor, or in contiguous storage locations on one processor.

Coding Guidelines
Common existing practice, for C developers, is to use the less than rather than the not equal operator as a
loop termination condition (see Table ??). Pointer arithmetic is based on accessing the elements of an array,
not its bytes. Looping through an array object using pointer arithmetic and relational operators has a fully

pointer
arithmetic
addition result

defined behavior.

Example

1 struct T {
2 int first;
3 /* Some member declarations. */
4 int middle;
5 /* More member declarations. */
6 } glob;
7

8 void f(void)
9 {

10 int *p_loc = &glob.first;
11

12 /*

v 1.1 January 30, 2008

6.5.8 Relational operators 1209

13 * Set all members before middle to zero.
14 */
15 while (p_loc < &glob.middle)
16 {
17 *p_loc=0;
18 p_loc++;
19 }
20 }

1207 All pointers to members of the same union object compare equal. pointer to union
members

compare equalCommentary
This behavior can also be deduced from pointers to the members of the same union type also pointing at the
union object and pointers to the same object comparing equal. union

members start
same address
pointers
compare equal

1208 If the expression P points to an element of an array object and the expression Q points to the last element of
the same array object, the pointer expression Q+1 compares greater than P.

Commentary
This special case deals with pointers that do not point at the same object (but have an association with the
same object).

C90
The C90 Standard contains the additional words, after those above:

even though Q+1 does not point to an element of the array object.

Common Implementations
On segmented architectures incrementing a pointer past the end of a segment causes the address to wrap

pointer
segmented
architecture

around to the beginning of that segment (usually address zero). If an array is allocated within such a segment,
either the implementation must ensure that there is room after the array for there to be a one past the end
address, or it uses some other implementation technique to handle this case (e.g., if the segment used is part
of a pointer’s representation, a special one past the end segment value might be assigned).

1209 In all other cases, the behavior is undefined. relational pointer
comparison

undefined if not
same objectCommentary

The C relational operator model enables pointers to objects to be treated in the same way as indexes into
array objects. Relational comparisons between indexes into two different array objects (that are not both
subobjects of a larger object) rarely have any meaning and the standard does not define such support for
pointers. Some applications do need to make use of information on the relative locations of different objects
in storage. However, this usage was not considered to be of sufficient general utility for the Committee to
specify a model defining the behavior.

C90
If the objects pointed to are not members of the same aggregate or union object, the result is undefined with
the following exception.

C++

5.9p2

January 30, 2008 v 1.1

6.5.8 Relational operators1210

— Other pointer comparisons are unspecified.

Source developed using a C++ translator may contain pointer comparisons that would cause undefined
behavior if processed by a C translator.
Common Implementations
Most implementations perform no checks prior to any operation on values having pointer type. Most
processors use the same instructions for performing relational comparisons involving pointer types as they
use for arithmetic types. For processors that use a segmented memory architecture, a pointer value is often

pointer
segmented
architecture

represented using two components, a segment number and an offset within that segment. A consequence of
this representation is that there are many benefits in allocating storage for objects such that it fits within a
single segment (i.e., storage for an object does not span a segment boundary). One benefit is an optimization
involving the generated machine code for some of the relational operators, which only needs to check the
segment offset component. This can lead to the situation where p >= q is false but p > q is true, when p
and q point to different objects.
Coding Guidelines
Developers sometimes do intend to perform relational operations on pointers to different objects (e.g., to
perform garbage collection). Such usage makes use of information on the layout of objects in storage, this
issue is discussed elsewhere.storage

layout

1210Each of the operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or equalrelational
operators
result value to) shall yield 1 if the specified relation is true and 0 if it is false.90)

Commentary
The four comparisons (<, <=, >=, >) raise the invalid exception if either operand is a NaN (and returns 0). Some
implementations support what are known as unordered relational operators. The floating-point comparison

relational
operators

unordered

1197

macros (isgreater, isgreaterequal, isless, islessequal, islessgreater, and isunordered), new
in C99, can be used in those cases where NaNs may occur. They are similar to the existing relational
operators, but do not raise invalid for NaN operands.
C++

5.9p1 The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to) all
yield false or true.

This difference is only visible to the developer in one case, the result type. In all other situations the behavior
relational
operators

result type

1211

is the same; false and true will be converted to 0 and 1 as-needed.
Other Languages
Languages that support a boolean data type usually specify true and false return values for these operators.
Common Implementations
The constant 0 is commonly seen as an operand to these operators. The principles used for this case generally
apply to all other combinations of operand (see the logical negation operator for details). When one of the

logical
negation

result is operands is not the constant 0, a comparison has to be performed. Most processors require the two operands
to be in registers. (A few processors[6] support instructions that compare the contents of storage, but the
available addressing modes are usually severely limited.) The comparison of the contents of the two specified
registers is reflected in the settings of the bits in the condition flags register. RISC processors do not contain
instructions for comparing integer values, the subtract instruction is used to set condition flags (e.g., x > y
becoming x-y > 0). Most processors contain compare instructions that include a small constant as part of
their encoding. This removes the need to load a value into a register.

Relational operators are often used to control the number of iterations performed by a loop. The imple-
mentation issues involved in this usage are discussed elsewhere.iteration

statement
syntax

v 1.1 January 30, 2008

6.5.8 Relational operators 1211

Coding Guidelines
While the result is specified in numeric terms, most occurrences of this operator are as the top-level operator
in a controlling expression (see Table 1197.3). These contexts are usually treated as involving a boolean role, boolean role

rather than a numeric value.

1211 The result has type int. relational
operators

result typeCommentary
The first C Standard did not include a boolean data type. C99 maintains compatibility with this existing
definition.

C++

5.9p1The type of the result is bool.

The difference in result type will result in a difference of behavior if the result is the immediate operand of
the sizeof operator. Such usage is rare.

Other Languages
Languages that support a boolean type usually specify a boolean result type for these operators.

Coding Guidelines
Most occurrences of these operators are in controlling expressions (see Table 1197.3), and developers are
likely to use a thought process based on this common usage. Given this common usage developers often
don’t need to consider the result in terms of delivering a value having a type, but as a value that determines
the flow of control. In such a context the type of the result is irrelevant. Some of the issues that occur when
the result of a relational operation is an operand of another operator (e.g., x=(a<b)) are discussed elsewhere. boolean role

January 30, 2008 v 1.1

References
1. J. F. Allen. Maintaining knowledge about temporal intervals. Com-

munications of the ACM, 26(11):832–843, 1983.

2. S. Dehaene, E. Dupoux, and J. Mehler. Is numerical comparison
digits? Analogical and symbolic effects in two-digit number compar-
isons. Journal of Experimental Psychology: Human Perception and
Performance, 16(3):626–641, 1990.

3. C. Freksa. Temporal reasoning based on semi-intervals. Artificial
Intelligence, 54(1):199–227, 1992.

4. M. Knauff, R. Rauh, and C. Schlieder. Prefered mental models in
qualitative spatial reasoning: A cognitive assessment of Allen’s cal-
culus. In Proceedings of the Seventeenth Annual Conference of the

Cognitive Science Society, pages 200–205. Lawrence Erlbaum Asso-
ciates, 1995.

5. G. Leech, P. Rayson, and A. Wilson. Word Frequencies in Written
and Spoken English. Pearson Education, 2001.

6. Motorola, Inc. MOTOROLA M68000 Family Programmer’s Refer-
ence Manual. Motorola, Inc, 1992.

7. R. S. Moyer and R. H. Bayer. Mental comparison and the symbolic
distance effect. Cognitive Psychology, 8:228–246, 1976.

8. R. S. Moyer and T. K. Landauer. Time required for judgements of
numerical inequality. Nature, 215:1519–1520, 1967.

9. J. Zhang and H. Wang. The effect of external representations
on numeric tasks. Quarterly Journal of Experimental Psychology,
58(5):817–838, Oct. 2005.

v 1.1 January 30, 2008

