
The New C Standard (Excerpted material)

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002-2008 Derek M. Jones. All rights reserved.

6.5.3 Unary operators1080

6.5.3 Unary operators

1080
unary-expression
syntax

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - ~ !

Commentary
Note that the operand of unary-operator is a cast-expression, not a unary-expression. A unary operator

cast-
expression

syntax
usually refers to an operator that takes a single argument. Technically all of the operators listed here, plus the
postfix increment and decrement operators, could be considered as being unary operators.

Rationale Unary plus was adopted by the C89 Committee from several implementations, for symmetry with unary minus.

Other Languages
Some languages (i.e., Ada and Pascal) specify the unary operators to have lower precedence than the
multiplicative operators; for instance, -x/y is equivalent to -(x/y) in Ada, but (-x)/y in C. Most languages

multiplicative-
expression

syntax call all operators that take a single-operand unary operators.
Languages that support the unary + operator include Ada, Fortran, and Pascal. Some languages use the

keyword NOT rather than !. In the case of Cobol this keyword can also appear to the left of an operator,
indicating negation of the operator (i.e., NOT < meaning not less than).

Coding Guidelines
Coding guidelines need to be careful in their use of the term unary operator. Its meaning, as developers
understand it, may be different from its actual definition in C. The operators in a unary-expression occur
to the left of the operand. The only situation where a developer’s incorrect assumption about precedence
relationships might lead to a difference between predicted and actual behavior is when a postfix operator
occurs immediately to the right of the unary-expression.

Dev ??
Except when sizeof (type-name) is immediately followed visually by a token having the lexical form
of an additive operator, if a unary-expression is not immediately followed by a postfix operator it need
not be parenthesized.

Although the expression sizeof (int)-1 may not occur in the visible source code, it could easily occur as
the result of macro replacement of the operand of the sizeof operator. This is one of the reasons behind the
guideline recommendation specifying the parenthesizing of macro bodies (without parentheses the expressionmacro def-

inition
expression

??

is equivalent to (sizeof(int))-1).

Example

1 struct s {
2 int x;
3 };
4 struct s *a;
5 int x;
6

2 v 1.1 January 30, 2008

6.5.3 Unary operators 1080

Numeric value

O
cc

ur
re

nc
es

0 1632 64 100 128150 200 255

1

10

100

1,000

10,000

100,000 unary-
× decimal-constant
• hexadecimal-constant

×

×

•

×
×××
××

•

×

•

×
×
×
××
×
×

•

×

•

×

×

×××

•

×

•

×

•

×

•

×
×
××
×××

×

•

×
×

•

×
×
×
×
×

×

×

×

××

×
××

×
×××
×

×
×
×

××

×
×

×

××

×

×

×××
×
×

×

×

×
×
×
××
×

×

×

×
×
×××
×
××

×

××
×
×
××

×

×

×
×

×

×
××
×

×
×

×

×
××
××

×

×

×
×
×

×

×
×××

×

××
×

•

×

•×

×

×

××××

×
×××

×

×
×
×

×

××××
×

×
×

×
××

×

×

××
×

×

×

×
×
××××
××

×
××

×

×
×

×
×

×

×
××

×
×××××××

×

×

××

×

×××

×

×

×
×

××
×
×
×

×
××
×
××
×
×

×
×
×
×
×
×
×××
×
××
×
×
×
××
×
×
×
×

××

×
•

×

Numeric value

0 1632 64 100 128150 200 255

unary˜

×

•

×
•×
•

×

•
×•

××•

×

•
×•

•
•
•

×
•

×•
•

•••

•

•×

×
•

×

•

•
•
•

•

••

•
•×
•

×

•

•
×
••
•
•

•

•

•

•• •

×

•
×

•

•
•
• •

×

•
•
•

•

•

•
•

••

•

•

•

••×

•
•

Figure 1080.1: Number of integer-constants having a given value appearing as the operand of the unary minus and unary ~
operators. Based on the visible form of the .c files.

7 void f(void)
8 {
9 x<-a->x;

10 x<--a->x;
11 x<- --a->x;
12 x<- - --a->x;
13

14 sizeof(long)-3; /* Could be mistaken for sizeof a cast-expression. */
15 (sizeof(long))-3;
16 sizeof((long)-3);
17 }

Usage

See the Usage section of postfix-expression for ++ and -- digraph percentages.
postfix-
expression
syntax

Table 1080.1: Common token pairs involving sizeof, unary-operator, prefix ++, or prefix -- (as a percentage of all
occurrences of each token). Based on the visible form of the .c files.

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

Token Sequence % Occurrence
of First Token

% Occurrence of
Second Token

! defined 2.0 16.7 ! (14.5 0.5
*v --v 0.3 7.8 -v identifier 30.2 0.4
-v floating-constant 0.3 6.7 *v (9.0 0.4
*v ++v 0.5 6.3 ~ integer-constant 20.1 0.2
! --v 0.2 4.8 ++v identifier 97.3 0.1
-v integer-constant 69.0 4.1 ~ identifier 56.3 0.1
&v identifier 96.1 1.9 ~ (23.4 0.1
sizeof (97.5 1.8 +v integer-constant 49.0 0.0
*v identifier 86.8 1.0 --v identifier 97.1 0.0
! identifier 81.9 0.8

January 30, 2008 v 1.1 3

6.5.3 Unary operators1080

Table 1080.2: Occurrence of the unary-operators, prefix ++, and prefix -- having particular operand types (as a percentage of
all occurrences of the particular operator; an _ prefix indicates a literal operand). Based on the translated form of this book’s
benchmark programs.

Operator Type % Operator Type % Operator Type %

-v _int 96.0 ~ unsigned long 6.8 ! _long 2.7
*v ptr-to 95.3 &v int 6.2 ~ unsigned char 2.5
+v _int 72.2 ~ unsigned int 6.0 &v unsigned char 2.4
--v int 54.7 +v unsigned long 5.6 ! unsigned long 2.1
! int 50.0 +v long 5.6 ~ long 2.0
~ _int 49.3 +v float 5.6 ++v unsigned char 1.9
&v other-types 45.1 ! other-types 5.6 ~ _unsigned long 1.7
++v int 43.8 ++v unsigned long 5.2 ~ _unsigned int 1.7
++v ptr-to 33.3 &v struct * 4.9 ! unsigned char 1.6
~ int 28.5 --v unsigned long 4.7 ~ other-types 1.6
--v unsigned int 22.1 ! unsigned int 4.7 -v _double 1.4
! ptr-to 20.1 *v fnptr-to 4.1 -v other-types 1.3
--v ptr-to 14.6 &v unsigned long 4.0 ++v long 1.2
&v struct 13.9 --v other-types 4.0 -v int 1.2
&v char 13.1 &v long 3.4 ! _int 1.2
++v unsigned int 12.6 &v unsigned int 3.0 ++v unsigned short 1.1
+v int 11.1 &v unsigned short 2.9 &v char * 1.1
! char 9.2 ! enum 2.9

v 1.1 January 30, 2008

References

January 30, 2008 v 1.1

