
The New C Standard (Excerpted material)

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002-2008 Derek M. Jones. All rights reserved.

6.10.3.4 Rescanning and further replacement1969

6.10.3.4 Rescanning and further replacement

1968After all parameters in the replacement list have been substituted and # and ## processing has taken place,rescanning

all placemarker preprocessing tokens are removed.

Commentary
The concept of placemarkers is only needed during the processing of the ## operator.

C90
Support for the concept of placemarker preprocessing tokens is new in C99.

C++

Support for the concept of placemarker preprocessing tokens is new in C99 and does not exist in C++.

1969Then, the resulting preprocessing token sequence is rescanned, along with all subsequent preprocessingrescanned
along with sub-
sequent tokens tokens of the source file, for more macro names to replace.

Commentary
Unlike argument substitution, and # and ## operator processing, the replacement list is not processed in
isolation from the rest of the source code. For instance, in:

1 #define M1(a) (a+1)
2 #define M2(b) b
3

4 int ei_1 = M2(M1)(17); /* becomes int ei_1 = (17+1); */
5 int ei_2 = (M2(M1))(17); /* becomes int ei_2 = (M1)(17); */

after the invocation of M2 is expanded, the resulting sequence is M1. The rest of the source code is (17);.
Rescanning including this sequence of preprocessing tokens, in the assignment to ei_1, results in an
invocation of the macro M1.

Rationale The rescanning rules incorporate an ambiguity. Given the definitions

#define f(a) a*g
#define g f

it is clear (or at least unambiguous) that the expansion of f(2)(9) is 2*f(9), the f in the result being introduced
during the expansion of the original f, and so is not further expanded.

However, given the definitions

#define f(a) a*g
#define g(a) f(a)

the expansion will to be either 2*f(9) or 2*9*g: there are no clear grounds for making a decision whether
the f(9) token string resulting from the initial expansion of f and the examination of the rest of the source
file should be considered as nested within the expansion of f or not. The C89 Committee intentionally left
this behavior ambiguous as it saw no useful purpose in specifying all the quirks of preprocessing for such
questionably useful constructs.

Coding Guidelines
There are situations where it is intended that a replacement list include preprocessing tokens from the rest
of the source file. For instance, if the name of a function needs to be unconditionally mapped to another

v 1.1 January 30, 2008

6.10.3.4 Rescanning and further replacement 1971

name an object-like macro needs to be used. However, after expansion the mapped name might invoke a
function-like macro:

1 #define isprint __PRINT_PROPERTY
2 #define __PRINT_PROPERTY(x) (((x < 0) || (x > 127)) ? 0 : __IS_PRINT[x])
3 int (__PRINT_PROPERTY)(int);
4

5 void f(void)
6 {
7 _Bool a_printable = isprint(’a’);
8 }

1970 If the name of the macro being replaced is found during this scan of the replacement list (not including the macro be-
ing replaced

found dur-
ing rescan

rest of the source file’s preprocessing tokens), it is not replaced.

Commentary

RationaleA problem faced by many pre-C89 preprocessors is how to use a macro name in its expansion without
suffering “recursive death.” The C89 Committee agreed simply to turn off the definition of a macro for the
duration of the expansion of that macro.

Coding Guidelines
Whether or not a macro expansion that depends on this recursion-breaking rule requires significantly greater
effort to comprehend than other macro expansions, involving similar numbers of preprocessing tokens but
no recursion breaking, is not known. Neither is it known whether an alternative set of macros, that did
not depend on recursion breaking, would require less effort. Without this information it is not possible to
estimate the cost/benefit of any guideline recommendations and none are made here.

Example

1 extern int M_1,
2 M_2;
3

4 #define M_1 M_2
5 #define M_2 M_1
6

7 void f(void)
8 {
9 M_1 = M_2; /* Macros do not alter the behavior, i.e., M_2 is still assigned to M_1 */

10 }

1 #define short static short
2

3 short si; /* Expands to static short si; */

Also see elsewhere for examples. EXAMPLE
reexamination

1971 Furthermore, if any nested replacements encounter the name of the macro being replaced, it is not replaced.

Commentary
Indirect recursion, via other macro definitions, is treated the same as direct recursion.

January 30, 2008 v 1.1

6.10.3.4 Rescanning and further replacement1972

Coding Guidelines
The reasoning here is the same as for the case of direct recursion.

Example

1 static int M_0 = 0;
2

3 #define M_0(x) M_ ## x
4 #define M_1(x) x + M_0(0)
5 #define M_2(x) x + M_1(1)
6 #define M_3(x) x + M_2(2)
7 #define M_4(x) x + M_3(3)
8 #define M_5(x) x + M_4(4)
9

10 int f_1(void)
11 {
12 return M_0(1)(2)(3)(4)(5); /* Expands to:
13 2 + M_0(3)(4)(5)
14 or
15 2 + M_0(0)(3)(4)(5) */
16 }
17

18 int f_2(void)
19 {
20 return M_0(5)(4)(3)(2)(1); /* Expands to: 4 + 4 + 3 + 2 + 1 + M_0(3)(2)(1) */
21 }

1972These nonreplaced macro name preprocessing tokens are no longer available for further replacement even if
they are later (re)examined in contexts in which that macro name preprocessing token would otherwise have
been replaced.

Commentary
The C preprocessor model is one where the incoming preprocessing tokens are processed and then output. It
is not intended that the preprocessor have to hold on to all preprocessing tokens it has processed, until the
end of the source file is reached.

1 #define F(a) a
2 #define FUNC(a) (a+1)
3

4 void f(void)
5 {
6 /*
7 * The preprocessor works successively through the input without
8 * backing up through previous processed preprocessing tokens.
9 */

10 F(FUNC) FUNC (3); /* final token sequence is FUNC(3+1) */
11 }

This rule allows implementations to mark preprocessing tokens with a single bit (this bit is often referred
to using the term blue paint, after the marking ink used by engineers, by members of the C committee),
indicating that they are no longer available for replacement.

Example

1 #define A A B C
2 #define B B C A

v 1.1 January 30, 2008

6.10.3.4 Rescanning and further replacement 1973

3 #define C C A B
4

5 A
6 /*
7 * Using the notation:
8 * X={ } the result of expanding X.
9 * lowercase an identifier that has been ’painted blue’.

10 * ’simplify’
11 expand A={ A B C }
12 paint A={ a B C }
13 rescan A={ a B={ B C A } C }
14 paint A={ a B={ b C a } C }
15 rescan A={ a B={ b C={ C A B } a } C }
16 paint A={ a B={ b C={ c a b } a } C }
17 A={ a B={ b c a b a } C }
18 A={ a b c a b a C }
19 rescan A={ a b c a b a C={ C A B }}
20 paint A={ a b c a b a C={ c a B }}
21 rescan A={ a b c a b a C={ c a B={ B C A }}}
22 paint A={ a b c a b a C={ c a B={ b c a }}}
23 A={ a b c a b a C={ c a b c a }}
24 A={ a b c a b a c a b c a }
25

26 simplify a b c a b a c a b c a
27

28 * Final tokens output:
29

30 A B C A B A C A B C A
31 */

1973 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing expanded to-
ken sequence

not treated
as a directive

directive even if it resembles one, but all pragma unary operator expressions within it are then processed as
specified in 6.10.9 below.

Commentary
As described elsewhere, a preprocessing directive is a particular sequence of preprocessing tokens at the start

preprocess-
ing directive
consists of

of translation phase 4. Macro-replaced preprocessing tokens don’t exist until after the start of translation
phase 4. The issue of arguments that resemble preprocessing directives is discussed elsewhere. The _Pragma

argument
resemble prepro-
cessing directive

unary operator is discussed elsewhere. _Pragma
operator

C90
Support for _Pragma unary operator expressions is new in C99.

C++

Support for _Pragma unary operator expressions is new in C99 and is not available in C++.

Example

1 #define H #
2 #define D define
3

4 #define DEFINE(a, b) H D a b
5

6 DEFINE(X, 3)

the invocation results in the sequence of preprocessing tokens:
{#} {define} {X} {3}
which are not treated as a preprocessing directive.

January 30, 2008 v 1.1

References

v 1.1 January 30, 2008

